B E1131 Pages: 3

Reg No.:	Name:	
iteg 110	ranc.	

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIFTH SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019

	FIFTH SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019			
	Course Code: EE303			
Course Name: LINEAR CONTROL SYSTEMS				
Max. Marks: 100 Duration: 3 Hours				
	PART A Answer all questions, each carries5 marks.	Marks		
1	Define transfer function and derive the transfer function of an RC network.	(5)		
2	With the help of a neat diagram, explain the various time domain specifications.	(5)		
3	The open loop transfer function of a unity feedback system is	(5)		
	$\frac{9}{(s+1)}$ Using dynamic error coefficients, find an expression for an error if the input r (t) = 1 + 2t +1.5 t ² .			
4	The open loop transfer function of a unity feedback system is $\frac{K}{s-4}.$	(5)		
	Find the closed loop poles when $k=0,1,2,310$ and mark it on the s- plane. Hence draw the root locus of the system.			
5	Explain Gain margin and Phase margin with the help of bode plot. Mark gain crosses over frequency and phase cross over frequency.	(5)		
6	With the help of suitable figure explain frequency domain specifications?	(5)		
7	Give two examples of non-minimum phase transfer function. Explain why they	(5)		
	are called non-minimum phase system?			
8	Give a physical example of transportation lag. How can it be represented?	(5)		

PART B
Answer any two full questions, each carries 10 marks.

9 a) Consider the block diagram given in figure below. Draw the signal flow graph (6) corresponding to the block diagram. Find the overall transfer function using Masons Gain Formula.

- b) Verify your answer using Block diagram reduction techniques. (4)
- 10 a) Explain the constructional features and principle of operation of a synchro? (5)
 - b) What are the advantages of stepper motor? List two applications of the stepper (5) motor?
- 11 a) Find the step response of a system with transfer function (6) $\frac{4}{s(s+b)+4}$ If b=4 and b =5. Also find the effect of b on damping ratio?
 - b) With the help of a circuit diagram explain Force Voltage and Force Current (4) analogy?

PART C Answer any two full questions, each carries 10 marks.

12 a) Consider the system given in figure below. Given $K_m = 2$ and $T_m = 1$. (7) If $K_A = 1$ find steady state error to step, ramp and acceleration input.

- b) What will happen to steady state errors if K_A is increased to 10? (3)
- 13 a) Explain the significance of angle and magnitude criterion in root locus? (5)

- b) Consider a system with characteristic equation $a_0s^3 + a_1s^2 + a_2s + a_3 = 0$; (5) given all coefficients are positive. Derive a sufficient condition for stability.
- The open loop transfer function of a unity feedback system is $\frac{10K}{s(s^2 + 2s + 2)}$ Find the open loop poles?
 - b) Draw the root locus. Find the range of values of K for which the system is stable. (8) Find all the closed loop poles corresponding to a damping ratio of 0.7

PART D

Answer any two full questions, each carries 10 marks.

- 15 a) Sketch the bode plot and find the gain crossover frequency for given (6) $G(s)H(s) = \frac{10}{s(s+5)}$
 - b) Given $G(s) = \frac{1}{s^2(s+2)}$ (4)

Find $\langle G(j\omega) \rangle$ at $\omega = 0$

- The open loop transfer function of a unity feedback system is $\frac{10}{s(s+2)(s+5)}$ Draw the Bode plot and find Gain margin and phase margin? (4)
- The open loop transfer function of a unity feedback system is $\frac{2K}{s(s+1)(s+2)}$ Investigate the stability of the system if K =1 using Nyquist stability criteria. Find the range of values of K for which the system is stable
